Adaptive RBF network control for robot manipulators

Authors

  • M. M. Fateh School of Electrical and Robatics Engineering, Shahrood University of Technology, Iran
Abstract:

TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed network includes a hidden layer with one node, two inputs and a single output. In comparison with other model-free estimators such as multilayer neural networks and fuzzy systems, the proposed estimator is simpler, less computational and more effective. The weights of the RBF network are tuned online using an adaptation law derived by stability analysis. Despite the majority of previous control approaches which are the torque-based control, the proposed control design is the voltage-based control. Simulations and comparisons with a robust neural network control approach show the efficiency of the proposed control approach applied on the articulated robot manipulator driven by permanent magnet DC motors.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

adaptive rbf network control for robot manipulators

tthe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. this paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. as a novelty, the proposed controller employs a simple gaussian radial-basis-function network as an uncertainty estimator. the proposed netw...

full text

Designing an adaptive fuzzy control for robot manipulators using PSO

This paper presents designing an optimal adaptive controller for tracking control of robot manipulators based on particle swarm optimization (PSO) algorithm. PSO algorithm has been employed to optimize parameters of the controller and hence to minimize the integral square of errors (ISE) as a performance criteria. In this paper, an improved PSO using logic is proposed to increase the convergenc...

full text

An Adaptive Impedance Controller for Robot Manipulators

A desired dynamic behavior of constrained manipulators can be achieved by means of impedance control and various implementations of fixed controllers have been proposed. In this paper, and adaptive implementation is presented as an alternative to reduce the design sensitivity due to manipulator mismatch. The adaptive controller globally achieves the impedance objective for the nonlinear dynamic...

full text

designing an adaptive fuzzy control for robot manipulators using pso

this paper presents designing an optimal adaptive controller for tracking control of robot manipulators based on particle swarm optimization (pso) algorithm. pso algorithm has been employed to optimize parameters of the controller and hence to minimize the integral square of errors (ise) as a performance criteria. in this paper, an improved pso using logic is proposed to increase the convergenc...

full text

An Alternative Stability Proof for Direct Adaptive Function Approximation Techniques Based Control of Robot Manipulators

This short note points out an improvement on the robust stability analysis for electrically driven robots given in the paper. In the paper, the author presents a FAT-based direct adaptive control scheme for electrically driven robots in presence of nonlinearities associated with actuator input constraints. However, he offers not suitable stability analysis for the closed-loop system. In other w...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 2

pages  159- 166

publication date 2014-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023